Stephen Smith's Blog

Musings on Machine Learning…

Posts Tagged ‘tensorflow.jl

TensorFlow from Julia

with 2 comments

Introduction

Last time, I gave a quick introduction to the Julia programming language which has just reached the 1.0 release mark after ten years of development. Julia is touted as the next great thing for scientific computing, machine learning, data science and artificial intelligence. Its hope is to supplant Python which is currently the goto language in these fields. The goal is a more unified language, since it was developed well after Python and learned from a lot of its mistakes. It also claims to have the flexibility of Python but with the speed of a true compiled language like C.

I saw that in the list of packages there was support for using Google’s TensorFlow AI system natively from Julia so I thought I would give this a try. Although it worked, it did reveal some challenges that Julia is going to face in its battle to become a true equal with Python.

Using TensorFlow in Julia

The TensorFlow wrapper/interface for Julia is in a package created by a PhD candidate at MIT, Jon Malmaud. You can add it to Julia using Pkg.add(“TensorFlow”) as well as view the source code on GitHub. Since I wrote an article recently comparing TensorFlow running on a Raspberry Pi to running on my laptop, I thought I’d use the same example and compare Julia to those cases. I cut/pasted the code into the Julia IDE Juno and made some code syntax changes and gave it a go. It came back that the Keras object was undefined.

I then noticed that in the Tensorflow.jl github there were a couple of examples doing predictions on the MNIST dataset, so at least these were solving the same problem as my article, just using different models. I fired these up, but they failed with syntax errors in the code to load the MNIST dataset. Right now this is a bit of a problem in Julia that not all libraries have been updated to the Julia 1.0 syntax. I had a look at the library to load MNIST and noticed that no one had contributed to it in three years. It appeared to be abandoned with no plans to continue it. After a bit more research I found another Julia package called MLDatasets that was maintained and would load MNIST along with several other popular datasets.

I logged an issue with the Tensorflow.jl repository that they should fix this. They replied that they didn’t have time but if I wanted to fix it, to go ahead. So I fixed this and checked it in to the Tensorflow.jl Github. So now these MNIST examples work with Julia 1.0. I was then happy to have given my small contribution back to this community.

I then thought, why not be ambitious and add the Keras layer to Tensorflow.jl? Well this led to some interesting revelations to how Tensorflow is architected.

Problems with the Tensorflow Architecture

Looking at some of the issues in the Tensorflow.jl library there were requests for things like TensorFlow’s eager execution and the TensorFlow layers interface. The answer to these issues was that the Julia interface only talked to the DLL/SO interface to Tensorflow and that these modules didn’t exist there and were in fact written in Python rather than C++. I had a look inside the TensorFlow Github and found that their Keras layer is also written in Python.

Originally Tensorflow.jl talked to the Tensorflow Python interface. Julia is really good at interoperability and can easily talk to both Python libraries as well as C/C++ DLL/SOs. The problem with talking to Python libraries is that it involves running a Python process and then doing process to process communications to execute the code. This tends to be way slower than talking to DLLs or SOs. So early on the TensorFlow.jl library was changed to just talk to the DLL/SO interface for Tensorflow and eliminated all Python dependencies. This then lets Julia use the really performant part of TensorFlow and perform all the core operations very quickly.

Now the problem seems to be that Google is doing a lot of the new Tensorflow development in Python and not putting the code into the core shared library. Google is also spending a lot of time promoting these new interfaces as the way to go. This means if you aren’t programming in Python you are definitely a second class citizen.

OK, so is this just bad for the newbie language Julia? Should Julia programmers just use the Jula native Flux AI library? Well, the other thing Google is promoting is running TensorFlow on things like mobile devices, but then you are accessing TensorFlow from Swift on iOS or from Java on Android. Now you have the same problems as the Julia programmer. You only have efficient access to the core low level APIs for TensorFlow and all the new fancy high level access is denied to you. Google’s API block diagram below highlights this.

To me this is a big architectural problem with TensorFlow. Its great to use from Python, but is really limited in other environments. The videos and blogs starting to surface on TensorFlow 2.0 are promoting eager execution and the Keras layer will be the default and primary ways to program with TensorFlow. This then begs the question as to whether these will be moved into the core shared library or will remain as Python code? At this point I haven’t seen this explained, but as we get closer to the 2.0 preview later this year, I’ll be watching this keenly.

It would certainly be nice if they move this Python code into C++ in the shared library so everyone can use it. At that point I think TensorFlow would be much more usable from Julia, Swift, Java, C++, etc. Here’s hoping that is a major upgrade in the 2.0 release.

Julia TensorFlow Code

Just for interest here is the simplest Julia MNIST example just to give a flavour for the code. This is a simple linear model, so doesn’t give great results. There is a more complicated example that uses a convolutional neural network and gives far superior results.

using TensorFlow
include("mnist_loader.jl")

loader = DataLoader()

sess = Session(Graph())

x = placeholder(Float32)
y_ = placeholder(Float32)

W = Variable(zeros(Float32, 784, 10))
b = Variable(zeros(Float32, 10))

run(sess, global_variables_initializer())

y = nn.softmax(x*W + b)

cross_entropy = reduce_mean(-reduce_sum(y_ .* log(y), axis=[2]))
train_step = train.minimize(train.GradientDescentOptimizer(.00001), cross_entropy)

correct_prediction = argmax(y, 2) .== argmax(y_, 2)
accuracy=reduce_mean(cast(correct_prediction, Float32))

for i in 1:1000
    batch = next_batch(loader, 100)
    run(sess, train_step, Dict(x=>batch[1], y_=>batch[2]))
end

testx, testy = load_test_set()

println(run(sess, accuracy, Dict(x=>testx, y_=>testy)))

Summary

You can certainly use TensorFlow from Julia. Just beware that you are limited to the lower level APIs, so anything TensorFlow has implemented in Python isn’t available to you. This means you set up the graph and then execute it, really like you always did in the earlier versions of TensorFlow. It would certainly be nice if Google fixes this problem for TensorFlow 2.0.

Advertisements

Written by smist08

September 22, 2018 at 5:43 pm