Stephen Smith's Blog

Musings on Machine Learning…

Posts Tagged ‘Artificial Intelligence

Making Business Applications Intelligent

leave a comment »

Introduction

Today Business Applications tend to be rather boring programs which present the user with rather complicated forms that need to be filled in with a lot of detail. Accuracy is tantamount and there are a lot of security measures to prevent fraud and theft. Companies need to hire large numbers of people to enter data very repetitively into these forms. With modern User Centered Design these forms have become a bit easier to work with and have progressed quite a bit since the original Business Apps on 3270 terminals connected to IBM Mainframes, but I don’t think anyone really considers these applications fun. Necessary and important yes, but still not many people’s favorite programs.

We’ve been talking a lot about the road to strong AI and we’ve looked at a number of AI tools like TensorFlow, but what about more practical applications that are possible right now? My background is working on ERP software, namely Sage 300/Accpac. In this article I’ll be looking at how we’ll be seeing machine learning/AI algorithms start to be incorporated into standard business applications. A lot of what we will talk about here will be integrated into many applications including things like CRM and Business Analytics.

Many of the ideas I talk about in this article are available today, just not all in the same place. Over the coming years I think we’ll see most of these become standard expected features in every Business Application. Just like we expect modern User Centered Design, tomorrow we will expect intelligent algorithms supporting us behind the scenes in everything we do.

Very High Level Diagram of the Main Components of an Intelligent Business Application

Some Quick Ideas

With Machine Learning and AI algorithms there could be many small improvements made to Business Applications, there could be major changes in the way things work, all the way up to automating many of the processes that we currently perform manually. Often small improvements can make a huge difference to the lives of current users and are the easiest to implement, so I don’t want to ignore these possibilities on the way to pursuing larger more ambitious longer term goals. Perhaps these AI applications aren’t as exciting as self-driving cars or real time speech translation, but they will make a huge difference to business productivity and lead to large cost savings to millions of companies. They will provide real business benefit with better accuracy, better productivity and automated business processes that lead to real cost savings and real revenue boosts.

Better Defaulting of Fields

Currently fields tend to be defaulted based on configuration screens configured by administrators. These might change based on an object like a customer or customer group, but tend to be fairly static. An algorithm could watch what a user (or all the users at a company) tend to use and make much more intelligent defaults. These could be based on various contexts of other fields, time/date, current promotions, even news feed items. If defaults are provided more intelligently, then it will save users huge time in data entry.

Better Auto-Suggestions

Currently auto-suggestions on fields tend to be based on a combination of previous values entered and performing a “Google-like” search on what has been typed so far. Like defaulting this could be greatly improved by adding more sophisticated algorithms to improve the suggestions. The real Google search already does this, but most “Google-like” searches integrated into Business Apps do not. Like defaulting, having auto-suggestions give better more intelligent recommendations will greatly improve productivity. Like Google Search uses all your previous searches, trending topics, social media feeds and many other sources, so could your Business Application.

Fraud Detection

Credit card companies already use AI to scan people’s credit card purchasing patterns as well as the patterns of people using stolen credit cards to flag when they think a credit card has been stolen or compromised. Similarly Business Applications can monitor various company procedures and expenses to detect theft (perhaps strangeness in Inventory Adjustments) or unusual payments. Here there could be regulatory restrictions on what data could be used, for instance HR data is probably protected from being incorporated in this sort of analysis. Currently theft and fraud is a huge cost to businesses and AI could help reduce it. Sometimes just knowing that tools like this are being used can act as a major deterrent.

Purchasing

Algorithms could be used to better detect when items are needed to reduce inventory levels. Further the algorithms can continuously search vendor prices looking for deals and consider whether its worth buying now at a cheaper price and incurring the inventory expense or waiting. When you regularly purchase thousands or more items, a dynamic algorithm keeping on track of things can really help.

Customer Data

When you get a new customer you need all sorts of information such as their address, phone number, contacts, etc. Perhaps an algorithm could also search the web and fill in this information automatically (perhaps this is a specific example of better defaulting). Plus the AI could scan various web source (some perhaps pay services for credit ratings and such) to suggest a good credit rating/limit for this new customer. The algorithm could also run in the background and update existing customers as this data changes, since keeping customer data up to date is a major challenge for companies with many customers. Knowing and keeping up to date with your customers is a major challenge for many companies and much of this work can be automated.

Chasing Accounts Receivables

Collecting money is always a major challenge for every company. Much of this work could be automated. Plus algorithms can watch the paying habits of customers to know if say they alway pay on the end of  the quarter, not to worry so much when they go over 30 days. But if a customer suddenly gets credit rating problems or their stock tanks or there is negative news on the company then you better get collecting. Again this is all a lot of work and algorithms can greatly reduce the manual workload and make the whole process more efficient.

Setting Prices

Setting prices is an art and a science. You need to lower prices to move slow moving items out of inventory and try to keep prices high to maximize return. You need to be aware of competitors prices and watch for these items going on sale. Algorithms can greatly help with this. Amazon is a master of this, maintaining millions of prices with AI all over their web site. Algorithms can scan the web for competitive pricing, watch inventory levels and item costs, know where we are in a quarter and how much we need to stimulate sales to meet targets. These algorithms can make all the trade offs of knowing our customer loyalty versus having to be low cost, etc. Similarly this can affect customer and volume discounts. Once you have a lot of items for sale, maintain prices is a lot of work, especially in the world of online shopping where everything is changing so dynamically. With the big guys like Amazon and Walmart using these algorithms so effectively, you need to as well to be competitive.

Summary

This article just gave a few examples of the many places we’ll be seeing AI and Machine Learning algorithms becoming integrated into all our Business Applications. The examples in this article are all possible today and in use individually by large corporations. The cost of all these technologies is coming down and we are seeing these become integrated into lower cost Business Applications for small and medium sized businesses.

As these become adopted by more and more companies, it will become a competitive necessity to adopt them or risk becoming uncompetitive in the fast paced online world. There will still be a human element to monitor and provide policies but humans can perform many of these tasks at the speed and scale that today’s world requires.

For the users of Business Applications, the addition of AI to the User Interactions, should make these applications much more pleasant to operate. Instead of gotchas there will be helpful suggestions and reminders. Instead of needed to memorize and lookup all sorts of codes, these will be usefully provided wherever necessary. I think this transition will be as big as the transition we made from text based applications to GUI applications, but in this case I think the real ROI will be much higher.

 

Written by smist08

July 26, 2017 at 2:03 am