Stephen Smith's Blog

Musings on Machine Learning…

Playing with Julia 1.0 on the Raspberry Pi

with 2 comments


Introduction

A couple of weeks ago I saw the press release about the release of version 1.0 of the Julia programming language and thought I’d check it out. I saw it was available for the Raspberry Pi, so I booted up my Pi and installed it. Julia has been in development since 2012, it was created by four MIT professors as an open source project for mathematical computing.

Why Julia?

Most people doing data science and numerical computing use the Python or R languages. Both of these are open source languages with huge followings. All new machine learning projects need to integrate to these to get anywhere. Both are very productive environments, so why do we need a new one? The main complaint about Python and R is that these are interpreted languages and as a result are very slow when compared to compiled languages like C. They both get around this by supporting large libraries of optimized code written in C, C++, Assembler and Fortran to give highly optimized off the shelf algorithms. These work great, but if one of these doesn’t apply and you need to write Python loops to process a large data set then it can get really frustrating. Another frustration with Python is that it doesn’t have a built in array data type and relies on the numpy and pandas libraries. Between these you can do a lot, but there are holes and strange differences between the two systems.

Julia has a powerful builtin array type and most of the array manipulation features of numpy and pandas are built in to the core language. Further Julia was created from scratch around powerful new just in time (JIT) compiler technology to provide both the speed of development of an interpreted language combined with the speed of a compiled language. You don’t get the full speed of C, but it’s close and a lot better than Python.

The Julia language borrows a lot of features from Python and I find programming in it quite similar. There are tuples, sets, dictionaries and comprehensions. Functions can return multiple values. For loops work very similarly to Python with ranges (using the : built into the language rather than the range() function).

Julia can call C functions directly (meaning you can get pointers to objects), and this allows many wrapper objects to have been created for other systems such as TensorFlow. This is why Julia is very precise about the physical representation of data types and the ability to get a pointer to any data.

Julia uses the end keyword to terminate blocks of code, rather than Pythons forced indentation or C’s semicolons. You can use semicolons to have multiple statements on one line, but don’t need them at the end of a line unless you want it to return null.

Julia has native built in support of most numeric data types including complex numbers and rational numbers. It has types for all the common hardware supported ints and floats. Then it also has arbitrary precision types build around GNU’s bignum library.

There are currently 1906 registered Julia packages and you can see the emphasis on scientific computing, along with machine learning and data science.

The creators of Julia always keep performance at the top of mind. As a result the parallelization support is exceptional along with the ability to run Julia code on CUDA NVidia graphics cards and easily setup clusters.

Is Julia Ready for Prime Time?

As of the time of this writing, the core Julia 1.0 language has been released and looks quite good. Many companies have produced impressive working systems with the 0.x versions of Julia. However right now there are a few problems.

  • Although Julia 1.0 has been released, most of the add on packages haven’t been upgraded to this version yet. In the first release you need to add the Pkg package to add other packages to discourage people using them yet. For instance the library with GPIO support for the Pi is still at version 0.6 and if you add it to 1.0 you get a syntax error in the include file.
  • They have released the binaries for all the versions of Julia, but these haven’t made them into the various package management systems yet. So for instance if you do “sudo apt install julia” on a Raspberry Pi, you still get version 0.6.

Hopefully these problems will be sorted out fairly quickly and are just a result of being too close to the bleeding edge.

I was able to get Julia 1.0 going on my Raspberry Pi by downloading the ARM32 files from Julia’s website and then manually copying them over the 0.6 release. Certainly 1.0 works much better than 0.6 (which segmentation faults pretty much every time you have a syntax error). Hopefully they update Raspbian’s apt repository shortly.

Julia for Machine Learning

There is a TensorFlow.jl wrapper to use Google’s TensorFlow. However the Julia group put out a white paper dissing the TensorFlow approach. Essentially TensorFlow is a separate programming language that you use from another programming language like Python. This results in a lot of duplication and forces the programmer to operate in two different paradigms at once. To solve this problem, Julia has the Flux machine learning system built natively in Julia. This is a fairly powerful machine learning system that is really easy to use, reducing the learning curve to getting working models. Hopefully I’ll write a bit more about Flux in a future article.

Summary

Julia 1.0 looks really promising. I think in a month or so all the add-on packages should be updated to the 1.0 level and all the binaries should make it out to the various package distribution repositories. In the meantime, it’s a good time to learn Julia and you can accomplish a lot with the core language.

I was planning to publish a version of my LED flashing light program in Julia, but with the PiGPIO package not updated to 1.0 yet, this will have to wait for a future article.

 

Advertisements

Written by smist08

August 31, 2018 at 7:34 pm

2 Responses

Subscribe to comments with RSS.

  1. […] Last time, I gave a quick introduction to the Julia programming language which has just reached the 1.0 release mark after ten years of development. Julia is touted as the next great thing for scientific computing, machine learning, data science and artificial intelligence. Its hope is to supplant Python which is currently the goto language in these fields. The goal is a more unified language, since it was developed well after Python and learned from a lot of its mistakes. It also claims to have the flexibility of Python but with the speed of a true compiled language like C. […]

  2. […] and went down rather than up, resulting in the collision. In reading about the programming language Julia recently, I had noticed several presentations on the development of the next generation of […]


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: