Stephen Smith's Blog

Musings on Machine Learning…

Fortran Lives

with 3 comments


I was looking at a programming IDE called Code::Blocks that seems popular on the Raspberry Pi. Much lighter weight than Eclipse or Visual Studio, but it has a great deal of the same functionality including debugging, project templates, code highlighting and auto-complete. One thing that caught my interest was that Code::Blocks has direct support for Fortran programming. Back when I took first year Computer Science at UVic, all the programming labs were done in WATFIV (Waterloo Fortran IV) and then one of my Co-op work terms was at the the Institute of Ocean Sciences analysing experimental data from the Arctic, writing in Fortran using the extensive Fortran scientific and visualization libraries that were state of the art for the time (on a Univac mainframe).

One thing I noticed when playing with Machine Learning and Python programming was that if I installed something that didn’t have a binary for the particular flavour of Linux I was using then it would download the source code and compile that. What surprised me was the number of Fortran source files it would compile. Part of the reason for this is the giant library of efficient and well tested numerical libraries written in Fortran that have either been donated to the public domain or originated that way from various University research projects. It turns out that many of the popular array, numerical and algorithm libraries for Python are all written in Fortran and a large part of the popularity of Python is the easy access to all these libraries (like LAPACK).


Many people think of GCC just as the Gnu C compiler for Linux. However officially GCC stands for the Gnu Compiler Collection and supports C, C++, Objective-C, Objective-C++, Fortran, Java, Ada, Go and OpenMP. This then provides a great free cross platform compiler for Fortran that supports most of the things in the latest standard. As a result you can do Fortran programming easily anywhere including the Raspberry Pi. GCC is the compiler that the Code::Blocks IDE runs to compile your Fortran programs.

Fortran isn’t pre-installed on the Raspberry Pi, so to compile a Fortran program you need to add Fortran support to GCC which you do from a terminal window by:

sudo apt-get install gfortran


I thought as an experiment I would port my simple flashing light program that I showed in Python and Scratch in my previous blog posting on breadboarding over to Fortran. So Python and Scratch come with GPIO libraries pre-installed and was really easy. For Fortran I didn’t see any such library, but fortunately for Unix/Linux you can usually access any hardware devices via the file metaphor. Basically you control the hardware by opening a file (usually in /dev) and then cause things to happen by writing various things to these special files. Similarly you read these files to get input or status. A good description of how to control the GPIO lines via files is given here. For instance if we want to turn on our LED we wired to pin 17, we would send 17 to the file /sys/class/gpio/export. We can do this from a terminal command line via:

echo 17 > /sys/class/gpio/export

This causes a number of files under /sys/class/gpio/glio17 to be created that we can now access. First we setup pin 17 for output via:

echo out > /sys/class/gpio/gpio17/direction

Then we turn pin 17 on via

echo 1 > /sys/class/gpio/gpio17/value

And turn it off via:

echo 0 > /sys/class/gpio/gpio17/value

Since most programming languages have file I/O libraries, under Linux this then makes most devices accessible.

Fortran Code

Creating the program was quite easy. I found a library on the Web that provides the GPIO access via the files which I’ll list later. The only problem was that the Fortran sleep function takes its parameters only in seconds so you can’t do a sub-second sleep which means the LEDs flash very slowly. Fortunately it turns out that you can call C runtime routines from Fortran fairly easily, so I include the interface to the C usleep (sleep in microseconds) function so we can use the same 0.2 second time between flashes that we used before. Below is the Fortran source code:


! Flash the GPIO lights
program main
  use gpio
  implicit none
     subroutine usleep(useconds) bind(C)
      use iso_c_binding
      implicit none
      integer(c_int32_t), value :: useconds
     end subroutine
  end interface
  integer i, sleepTime

  call gpioSetOut(17)
  call gpioSetOut(27)
  call gpioSetOut(22)

  sleepTime = 200000

  do i = 1, 10
    call gpioOutput(17, 1)
    call usleep(sleepTime)
    call gpioOutput(17, 0)
    call gpioOutput(27, 1)
    call usleep(sleepTime)
    call gpioOutput(27, 0)
    call gpioOutput(22, 1)
    call usleep(sleepTime)
    call gpioOutput(22, 0)
  end do

Fortran has evolved a bit since my University days. There are full structured programming constructs, so you don’t need to use labels. Notice the DO loop has a DO END rather than specifying a label on a CONTINUE statement as we used to do. Fortran has added good support for modules and even object oriented programming while maintaining compatibility for all those scientific libraries everyone loves so much.

Now the GPIO module which I found here. This shows how to create a nice Fortran module. It also shows some Fortran string processing. The module didn’t work for me directly, I had to add a sleep statement after allocating the GPIO pin to allow time for the files to be created or I got file access errors. Here is the code:


module gpio
    implicit none
    subroutine gpioSetOut(pin)
        integer, intent(in) :: pin
        character (len=35) :: unexportChar
        character (len=33) :: exportChar
        character (len=45) :: directionChar
        write (unexportChar, '("echo ", I0, " > /sys/class/gpio/unexport")') pin
        write (exportChar, '("echo ", I0, " > /sys/class/gpio/export")') pin
        call execute_command_line(unexportChar)
        call execute_command_line(exportChar)
        call sleep(1)

        write (directionChar, '("echo out > /sys/class/gpio/gpio", I0, "/direction")') pin
        call execute_command_line(directionChar)
    end subroutine gpioSetOut

    subroutine gpioSetIn(pin)
        integer, intent(in) :: pin
        character (len=35) :: unexportChar
        character (len=33) :: exportChar
        character (len=45) :: directionChar
        write (unexportChar, '("echo ", I0, " > /sys/class/gpio/unexport")') pin
        write (exportChar, '("echo ", I0, " > /sys/class/gpio/export")') pin
        call execute_command_line(unexportChar)
        call execute_command_line(exportChar)
        call sleep(1)

        write (directionChar, '("echo in > /sys/class/gpio/gpio", I0, "/direction")') pin
        call execute_command_line(directionChar)
    end subroutine gpioSetIn

    subroutine gpioOutput(pin, value)
        integer, intent(in) :: pin, value
        character (len=45) :: valueChar

        write (valueChar, '("echo ", I1, " > /sys/class/gpio/gpio", I0, "/value")') value, pin
        call execute_command_line(valueChar)
    end subroutine gpioOutput

    subroutine gpioRead(pin, value)
        integer, intent(in) :: pin
        integer, intent(out) :: value
        character (len=28) :: valueChar

        write (valueChar, '("/sys/class/gpio/gpio", I0, "/value")') pin

        open (unit=1, file=valueChar)
        read (1,*) value
        close (1)
    end subroutine gpioRead

end module gpio

One other thing, I needed to add -lgfortran as a linker option in Code::Blocks, since for some reason a freshly created Fortran application project didn’t include the link for the Fortran runtime.

Fortran Evolution

The latest standard for Fortran came was Fortran 2008 which came out in 2010. The next version will be Fortran 2018 and we’ll see if it shows up next year. GCC supports most things in Fortran 08 plus a few other enhancements. The next 2018 release is includes quite a few things including more advanced parallel processing capabilities and easier interoperability with C. Certainly Fortran has made great strides since my University days with structured, modular and object oriented programming support along with variable length string processing. Fortran really excels at parallel processing support since it is still the goto language on most supercomputers and used for all those advanced climate, astronomical and other scientific models.


I think I’ll stick to Python as my current goto language. But playing with Fortran was fun and it’s amazing to see how much usage it still gets. If you are doing serious high performance numerical processing then you are probably going to have to get your hands dirty with Fortran. Certainly the Raspberry Pi is a good place to learn Fortran with high quality free tools like Code::Blocks and GCC Fortran.



Written by smist08

December 2, 2017 at 4:39 pm

3 Responses

Subscribe to comments with RSS.

  1. […] blogged on programming Fortran a few articles ago, this was really a tangent. I installed the Code::Blocks IDE to do some C […]

  2. Hi Stephen,
    Great article! Are you interested in republishing this on If so, please message me for more details: (
    We get more than a million page views a month and publish content under a CC BY-SA 4.0 license.

    Rikki Endsley

    January 3, 2018 at 3:11 pm

  3. […] I wanted to produce an Assembler  language version of the little program I did in Python, Scratch, Fortran and C to flash three LEDs attached to the Raspberry Pi’s GPIO port on a breadboard. So in this […]

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: